
Approximate Gaussian Elimination for
Laplacian Systems

MA4291 Presentation Report 2

Ang Yan Sheng
A0144836Y

Motivation A Laplacian matrix is a symmetric matrix L such that all entries
off the diagonal are nonpositive, and the entries in each row sum to 0. Note that
every Laplacian matrix L corresponds to a weighted graph, since for some suitable
weights wij > 0, we can write

L =
∑

16i<j6n

wij(ei − ej)(ei − ej)
T .

The main motivation for studying Laplacians comes from the following natural
quadratic form on weighted graphs:

xTLx =
∑

16i<j6n

wij(xi − xj)
2.

This form arises in various contexts, with interpretations such as energy (system of
springs, graph drawing), power dissipated (resistor networks), or an error function
(function learning on graphs), usually as a quantity to be minimised. Moreover, the
Poisson equation ∆u = f, ubiquitous in digital geometry processing, can also be
discretised on a mesh and reduced to minimising this form.

By calculus, this problem can be reduced to solving a linear system of the form
Lx = b. We can solve this in O(n3) time by Gaussian elimination (ie. LU factori-
sation, or Cholesky factorisation for symmetric matrices), but in applications for
sparse graphs with millions or even billions of vertices, this is not fast enough.
Moreover, the worst case running time does not improve even when L is sparse,
since the Cholesky factorisation of L might not be sparse. Hence we arrive at the
following problem statement:

Problem. Given a Laplacian matrix L ∈ Rn×n with m nonzero entries, and b ∈ Rn,
efficiently solve Lx = b to accuracy ε.

The first major theoretical breakthrough for this problem was Spielman and
Teng’s (2004) nearly linear time algorithm, which runs inO(m ln50 n ln(1/ε)) time.

1



Since then the field has progressed steadily, and the current state of the art algo-
rithm (Cohen et al. 2014) runs in O(m ln1/2 n ln(1/ε)) time—in other words, solv-
ing a sparse Laplacian system is even faster than sorting the nonzero entries of the
matrix!

Most of these near-linear time algorithms rely on difficult graph-theoretic con-
structions such as low-stretch trees and expander graphs. We will present a new
approach, based on Kyng-Sachdeva (2016) and Kyng’s thesis (2017), which only
uses random sampling.

Approximate Cholesky factorisation A popular method to solve the system
Lx = b numerically is by using an iterative scheme such as xk+1 = Mxk + N−1b.
It is easy to show that this scheme converges to a solution of the original equation
for all initial x0 if and only if M = I − N−1L and ‖M‖ < 1.

Hence if we can find a sparse approximate Cholesky factorisation to L, namely some
N = UTU with U sparse upper-triangular, and N ≈1/2 L (meaning ‖N−1L − I‖ <
1/2), then we get an ε-approximation to the solution after O(ln(1/ε)) iterations.

Since we are working with Laplacian matrices, we should interpret Cholesky
factorisation in graph theoretic terms. As such, we recast each step of the Cholesky
factorisation algorithm as subtracting a rank 1 matrix which agrees with the first
row and column of the given matrix. For example, we may write

L =


16 −4 −8 −4

−4 5 0 −1

−8 0 9 −1

−4 −1 −1 6

 =


16 −4 −8 −4

−4 1 2 1

−8 2 4 2

−4 1 2 1

+

 4 −2 −2

−2 5 −3

−2 −3 5



=


16 −4 −8 −4

−4 1 2 1

−8 2 4 2

−4 1 2 1

+

 4 −2 −2

−2 1 1

−2 1 1

+

 4 −4

−4 4


= c1cT1 + c2cT2 + c3cT3 ,

where
c1 = (4,−1,−2,−1)T , c2 = (0, 2,−1,−1)T c3 = (0, 0, 2,−2)T .

We can then read off the Cholesky factorisation as L = UTU, with

U =
(
c1 c2 c3 0

)T
=


4 −1 −2 −1

2 −1 −1

2 −1

0

 .
Note that rank 1 matrices are also Laplacians, so we can look at the graphs

corresponding to the matrices in each step (see figure). Hence subtracting a rank 1
matrix from a Laplacian removes the set of all edges (or star) ST[L]v from a vertex,
while adding a clique CL[L]v to its neighbours.

2




16 −4 −8 −4

−4 5 0 −1

−8 0 9 −1

−4 −1 −1 6

 =


16 −4 −8 −4

−4 1 2 1

−8 2 4 2

−4 1 2 1

+

 4 −2 −2

−2 5 −3

−2 −3 5



1

2

3

4

4

8

4

1

1

1

2

3

4

4

8

4

−2
−1

−2

ST[L]v1
−CL[L]v1

2

3

4

2

2

3

Algorithm 1 CHOLAPX ′(L, δ)

1: Split each edge into ρ = 12 ln2(1/δ) copies
2: Pick random permutation of vertices
v1, . . . , vn

3: S0 ← L
4: for i = 1, . . . , n do

5: ci ←


1√

Si−1(vi,vi)
Si−1(vi, :) Si−1(vi, vi) 6= 0

0 else
6: Ci ← CLIQUESAMPLE(Si−1, vi)

7: Si ← Si−1 − ST[Si−1]vi
+ Ci

8: end for
9: U←

(
c1 · · · cn

)T
10: return U

Thus at each step of Cholesky
factorisation, we remove deg(v)
edges but add in

(deg(v)
2

)
new

ones; this results in a fill-in
phenomenon, which is why
sparse Laplacians might not
have sparse Cholesky factori-
sations.

The main idea of Kyng-
Sachdeva (2016) and Kyng
(2017) is to add only deg(v)
edges randomly sampled from
CL[L]v at each step (line 6 of
Algorithm 1), which ensures
that the graph stays sparse.

Theorem (Kyng 2017). Let δ < n−100. Then with probability 1−O(δ), CHOLAPX ′(L, δ)
returns U with O(m ln2(1/δ) lnn) nonzero entries such that UTU ≈1/2 L. Moreover,
for t > 1, CHOLAPX ′(L, δ) runs in O(tm ln2(1/δ) lnn) time with probability 1− n−t.

Algorithm 2 CLIQUESAMPLE(S, v)

1: for e = 1, . . . ,degS(v) do
2: Sample (v, u1) with probability w(v,u1)

wS(v)

3: Sample (v, u2) uniformly
4: Ye ← w(v,u1)w(v,u2)

w(v,u1)+w(v,u2)
(eu1

−eu2
)(eu1

−eu2
)T

5: end for
6: return

∑
e Ye . expected value = CL[S]v

To prove the above result,
the key observation is that the
partial Cholesky factorisations
produced by this algorithm,
namely

Li = Si +

i∑
j=1

cjcTj ,

satisfies L0 = L, Ln = UTU, and Li − Li−1 = Ci − CL[Si−1]vi
, which has expected

value zero (conditional on L0, . . . ,Li−1). Hence (Li)
n
i=0 is a matrix martingale.

3



We want to show P
(
‖L−1Ln − I‖ > 1

2

)
= O(δ); by the above discussion, this is

a matrix martingale concentration bound. The main tool that Kyng uses here is a
matrix analogue of the Freedman inequality (1975):

Theorem (Tropp 2011). Let (Ak)k>0 be a symmetric d × d-matrix martingale with
λmax(Bk) 6 R, where Bk = Ak−Ak−1. Let Wk =

∑k
j=1 E<j(B2

j ). Then for all t > 0 and
σ2 > 0,

P
(
∃k : λmax(Ak) > t and ‖Wk‖ 6 σ2

)
6 2d exp

(
−t2/2

σ2 + Rt/3

)
.

After normalising with respect to L and adding a stopping condition to the
martingale, Kyng splits the failure probability into two terms, according to the
variation measure Wk. The matrix Freedman inequality is used directly to bound
the probability when Wk is small. Surprisingly, by another application of the ma-
trix Freedman inequality on Wk itself (!), we can also bound the probability that
Wk grows large, which completes the proof.

Extensions Note that the running time of CHOLAPX ′ is probabilistic. Intu-
itively, the algorithm takes longer to run if it happens to pick many vertices with
high degree. This suggests a tweak where we only pick vertices with degree at
most twice the average degree, and Kyng also showed that this modified algo-
rithm CHOLAPX has running time uniformly bounded by O(m ln2(1/δ) lnn).

Inspired by this algorithm, Spielman has proposed a variation where instead of
removing, sampling and replacing vertices, we perform analogous operations on
edges; this corresponds to Gaussian elimination on individual entries instead of on
rows and columns.∗ In practice, this heuristic performs remarkably consistently
across different families of graphs. However, the matrix martingale techniques
used by Kyng break down in this context, and a theoretical explanation of why
this algorithm works is still an open problem.

References

R. Kyng. Approximate Gaussian Elimination. Yale University, PhD dissertation, 2017.
D. Spielman. “The Laplacian Matrices of Graphs.” IEEE International Symposium
on Information Theory. Barcelona, 16 Jul 2016. Plenary Lecture.
J. Tropp. “Freedman’s Inequality for Matrix Martingales.” Elect. Comm. in Probab.,
16, 2011, 262–270.

∗This is implemented as the approxCholLap method in the Laplacians.jl package, a large collec-
tion of Laplacian-related graph algorithms. For solving Laplacian systems, this heuristic is recom-
mended over other algorithms, including an implementation of CHOLAPX.

4

https://github.com/danspielman/Laplacians.jl

